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PREFACE 

This report was prepared by Dr. Robert B. Herrmann of St. Louis 

University, St. Louis, Missouri, as part of ongoing work at the U. S. 

Army Engineer Waterways Experiment Station (WES) in Civil Works Investi- 

gations, "Methodologies for Selecting Design Earthquakes," sponsored by 

the Office, Chief of Engineers, U. S. Army. 

Preparation of the report was under the direction of Dr. Ellis L. 

Krinitzsky, Chief, Engineering Geology Research Facility, WES. General 

direction was by Mr. James P. Sale, Chief, Soils and Pavements Labora- 

tory, and Mr. Don C. Banks, Chief, Engineering Geology and Rock Me- 

chanics Division. 

COL John L. Cannon, CE, was Commander and Director of WES; 

Mr. F. R. Brown was Technical Director. 
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EARTHQUAKE GENERATED SH WAVES IN THE NEAR FIELD 

AND NEAR-REGIONAL FIELD 

PART I: INTRODUCTION 

1. The description of earthquake generated ground motion is a 

difficult problem due to the complex nature of the earthquake process 

itself as well as the process of transmission of seismic energy through 

the real earth. Because of this complexity, it is difficult to fit ob- 

served earthquake strong motion data to simple prediction models with 

any reliability. Many attempts have been made to fit strong motion data 

as a function of parameters such as earthquake magnitude, focal depth 

and epicentral distance. Such models usually succeed in predicting the 

mean of the observed data set, but because of their strictly empirical 

nature offer no insight to the cause of the scatter. 

2. Some of the error in the fit of these predictive models can be 

accounted for by making the model more complex. However, this cannot be 

done blindly since the addition of the extra parameters required to ex- 

plain the scatter of simpler models may not have a theoretical justifi- 

cation. In any case, a model based upon a strictly empirical fit may 

not be general enough to admit ? ditions to the data base. A better ap- 

proach to the modeling of obs t&  data is to perform a theoretical 

study of the generation of  'f;qu*ke ground motion so that an insight 

on the choice of the empirica» moiel used can be obtained. 

3. The purpose of this report is to present work performed on 

modeling the SH component of ground motion for elementary earthquake 

point sources for ground motions with frequencies less than 1.0 Hz at 

observation sites 5-500 km from the source. While the extension of this 

report to include higher frequencies is important for the understanding 

of theoretical SH wave propagation in these distances ranges, the spa- 

tial inhomogeneities of the real earth are such that an analytical solu- 

tion is not obtainable at frequencies much greater than 1 Hz for a real 

earth. However the insights of the modeling performed here will be of 

great value in understanding the gross properties of the high frequency 

content of earthquake generated motion. 

- - • •--•— -•- 



•  

PART II: THEORY 

4. A recent paper by Helmberger and Malone demonstrates 

how well earthquake ground motion can be modeled by taking into 

account the effect of crustal layering on the seismic signal. They 
2 3 

used a generalized ray technique ' to construct their solution. 

This technique involves the computation of all possible contributions 

to the seismic signal, whether due to multiple reflection or refrac- 

tion. The advantage of this technique is that it is valid for high 

frequencies. A disadvantage, though, is that for a reasonable model 

of the earth the number of individual ray contributions to the seismic 

signal becomes so large that the computer algorithm required is also 

very complex. The generalized ray technique is thus limited to 

either simple earth models or to studies of just part of the total 

ground motion time history. 
4 5 

5. Another approach is that developed by Haskell and Hudson. 

This method does not consider the contribution of the individual 

reflected and refracted arrivals, but rather yields the complete 

solution for a source in a layered haIfspace. The drawback of the 

wave theory approach is the difficulty of finding solutions at high 

frequencies. However, the eartn model can be as complicated as re- 

quired. It is the wave tneory method that is tne subject of this 

report. The basic theory used is a modification of that developed by 
4       5 

Haskell and Hudson. The modifications involved recasting their 

solutions into forms amenable to the numerical computation of not only 

the surface wave but also the refracted and reflected body wave con- 

tributions. 

Statement of the Problem 

6. The problem considered is that of SH wave generation by an 

elementary point source in the m  layer of an N layered structure 

with an upper free surface. Each layer is homogeneous and isotropic 



1 

with compressional wave velocity o^ , shear wave velocity ßk» and 
density fh. (k * 1» K).    The N     layer extends downwards to infinity. 
A cylindrical coordinate system (r,4tz) is used with origin on the 
free surface directly above the source, with the z-axls taken positive 
downwards.    The layer interfaces are the planes z • z.  (k • 1,2,...,N-1) 
The source is situated on the plane z * zm_j + hm.    For purposes of 
derivation, the source is restricted to lie in one of the layers above 
the half space,   d   • z   - zm ,  is the thickness of the m     layer. 

7.   Hudson   gives the following expression for the Fourier trans- 
form of the displacements at the free surface z = 0: 

* 

0) 

•-0 0 

- ~T (g~ cos n$+gf sin #»£) Jm(kr)/FL ] 

«5 CO 

«•(r, 4>> o, a) m y f dk {-£- <*,"• cos n<f> ~gr" sin n<f>) J„(kr)/F 

m     m 

B.(r, 4>, e, w) - y J dk j (* ~ cos nj +g," sin n<f>) Jm(kr)/F\ . 

In this expression u , the radial displacement, is positive in a direc- 

tion away from the source; ü\, the tangential displacement, is positive 

in a direction of increasing $; u , the vertical displacement, is posi- 

tive downward. The explicit expressions for the various terms in these 
4        5 equations are given by Haskell and Hudson. 

8. Care must be taken in evaluating the expressions in Equation 1 

because of the presence of non-causal terms.  The non-causality of 

certain parts of the solution arises because cylindrical potentials 

were used to form the solution, when a cartesian coordinate system 

would be more appropriate. Because of this, the nature of the solution 

of Equation 1 is such that very close to the source the tangential and 
radial displacements contain P, SV, and SH wave components. 
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9. The solution of Equation 1 is simplified if one is interested 

primarily in the propagating wave contribution. Using the relation 

3r Jn(kr) = k Jn.,(kr) - £ Jn(kr) (2) 

•1 and ignoring terms decreasing faster than r    , the solution for 
the Fourier transform of the tangential displacements becomes 

*^(r.*,0t») *   I   f   -(gjs cos n* - gjc sin n^J^krjFj^k dk^ (3) 

wnere 

\    ' (L21 " HV Sl    + (L22 " L12} s2 

C=<L21-L11>S1S+(L22-L12>S2S 
(4) 

FL    =    Jn   - J21 

10.    The L^. and E... are elements of the L and E matrices which 
are defined by the matrix products 

-1 
J*Ef/ AN-l<dN-l>---W 

*****   WW^WW^VV' 
(5) 

The various matrices in Equation 5 are defined as 

EN    » 
v». 

•1/fc 

(6) 
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Sß/p3 vß 

and 

D(z) • 

where tD(z) = cosh v„z, S.(z) » sinh v„z, and 
p        p  p        p 

p*Vß C8 

Cß/p -Vv6 
2 

8 v S 
81 

2 

"6S 

(7) 

(8) 

•    (^-k2}1'2    k>kg 

. IC**-*2)1'2   k<kß 

The elements of the matrices are to be evaluated using the layer 

parameters of the particular indicated by the subscripts of Equation 5. 
nc s 4 11.    Tne source coefficients s.  '    are adapted from Haskell. 
J 

It is generally accepted that a system of point forces oriented to 

form a double-couple without moment, or equivalently two perpendicular 

dipoles of opposite sign, is an adequate representation of the dis- 

location model of an earthquake source. Movement on a fault plane 

can be described by either of the two force systems mentioned above 

or by defining the direction of slip on a fault plane of given dip 

and strike. The interrelationship of these three ways of describing 
7 

the earthquake source is given by Herrmann.  The use of the perpen- 

dicular dipole representation leads to the least confusion in applica- 

tion. Let tne orientation of the tension and pressure axes in car- 

tesian coordinates be given by the vectors T = (fiif2»N) 
and 

FT * (n1,n2,n3), respectively. The source coefficients s"c and s!?s 

are all zero except for the terms 

s]c. 2(f1f3 V3)/4l% 
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sjs = - 2(f2f3 - n2n3)/4»4 

s|e = k(f£ - ff - nf + n*)/4nß* (9) 

S2S • - 2k(f]f2 - n1n2)/4irßrn 

where k is the wavenumber and ß    is the shear wave velocity in the 
1 

source layer.    The expressions for E" , D, and s? *   differ from those 
4 5 given by Haskell    and Hudson    in that they have been modified to elim- 

inate apparent numerical singularities.    The final solution given by 

Equation   3    is the same as that given by these authors. 

12.    For an earthquake source described by the source coefficients 

of Equation 9, the desired solution of Equation 3 can be rewritten as 

the sum of two terms: 

%(r,<j>,0,u>) = F1(f,n,*)G1 + F2(f,n,*)G2      , (10) 

where 
00 

Gl  =       /    -(9i/FL)V
kr>k dk 

0 

G2 •     I   -(g2/FLty(kr)k dk 

gl 3    L2l " hi 

g2 *    k(L22 - L12) (ll) 

FL =      Jn  - J21 

2 
Jm F|(r,n,»)J = - 2[(f2f3 - n2n3)cos«>   - (fjfj - r^n^sln* ]/4irß 

Fz(f,nA) • - [2(f) f8 - n^n2)cos 2+ + (f2-f*-n2+n*)sin 2o>]/4*em. 
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13.    To understand the source terms, three simple models of 

an earthquake are considered.   Let the x and y axes of the cartesian 

coordinate system point north and east, respectively.   The angle + 

is then the azimuth measured clockwise from north. 

a_.    Right lateral vertical strike slip fault striking north 

f = (-.707,.707,0) n= (.707,.707,0) 

F^f.n,*) » 0 

^(f.n.f) s 2 cos 2*/4Ttfj m 

b_. Thrust faulting on a fault dipping 45 to the east or 
west and striking north (45 dip slip) 

f » (0,0,1) n = (0,1,0) 

^(f.n,*) = 0 

F2(f»n,<(.) =    sin 2<j>/4irß m 

c.    Vertical dip slip faulting on a fault striking north 
with the east side downthrown 

f = (0,.707,.707) rT= (0,-.707,.707) 

F^f.n,*) = - 2 cos$/4tfß m 

F2(f»n»*) = ° • 

14. An examination of these terms indicates that for vertical 

strike slip faulting or for 45° dip slip faulting, the solution for 

SH wave motion is proportional to the function G2 only. Likewise for 

pure dip slip on a vertical fault, the SH wave motion is a function of 

10 

IM^BM^I^BI 
a i i   M, "•-•*"• 

..   
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G, only.    It is also Interesting to note that a vertical strike slip 

fault is twice as efficient a generator of SH waves as a 45° dip slip 

fault.   The numerical techniques and examples to follow deal with the 

functions G, and G„ only, and must be multiplied by F.(f,n,<j>) and 

Mf »""»*) •r proper scaling before the synthetic seismograms are 

compared to real data. 

15.    After Equation 10 is evaluated, it must be multiplied by 

the Fourier transform S(w) of s(t), the source time function.    For a 

dislocation source, s(t) represents the time history of the faulting 

process for which s(t) = 0 for t < 0 and s(t) • M   for t » 0.    The 

seismic moment M   is defined by the relation M   = yüÄ, where \i Is the 

rigidity of the medium in which the faulting occurs, o is the average 

fault displacement and A is the fault area.    In normal use the CGS 

units of M   are dyne-cm.    The SH wave ground motion as a function of 

time is obtained by taking the inverse Fourier transform of the 

product of S(u ) and Equation 3: 

l — 
u.(r,4»,0,t) = (2TT)"' / S(u)u.(r,<(.,0,u))exp(1u)t) do (12) 

Hudson discusses the mathematics of superposition of solutions such 

as Equation 12 to represent extended sources and complex rupturing 

processes. However, these extensions are beyond the scope of this 

report. 

11 
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PART III: NUMERICAL TECHNIQUES ANO TESTS 

16. As seen In the previous section, the solution of SH wave 
motion due to an arbitrary point dislocation source model of an 
earthquake reduced to the evaluation of two Integrals, 

6, -  /-(gi/FL)J0(kr)kdk 
I 03) 

G2 *  /-(92/^)^1 (kr)k dk 
o 

where g^, g2, and F. are defined In Equation 11. The objective of this 
section 1s to recast these Integrals Into a form suitable for numerical 
Integration. As an Independent test of the numerical Integration 
technique, the problem Is solved by a different technique for a simple 
earth model, and the two solutions are compared. 

Contour Integration 

17. A contour Integration method for evaluation of integrals 
of the form of Equation 13 has been described by many authors. The 
development given here parallels one presented by Ewing, Jardetzky 

o 
and Press. 

18. The two integrals in Equation 13 are of the general form 

OS 

I =       /   f(k,o»)Jn(kr)k dk . (14) 
0 

The function f(k,u) has a finite number of poles on the real axis 
for k  < k < k and a branch point at k = k . From Equation 13, 

f(k,w) = 9i/FL for n * 0 and f(k,u) • Sg/^ ^
or n a  '• Ä study of the 

functional forms of g,, g2, and F, shows that f(k,u) is even In k for 
n even and odd in k for n odd. 

19. The Bessel function of the first kind can be expressed in 

12 

1 



terms of the Hankel functions of the first and second kind by the relation 

On(kr) - I I  H^(kr) + H<
2>(kr) ] . (15) 

Using Equations 14 and 15, one obtains 

I - i- / f(k,w)H*1*(kr)k dk 

+ \  I   f(k,ü»)H^2)(kr)k dk (16) 

* *1+I2. 

20. The integrals of Equation 16 are improper since the 

integrands become infinite at the zeros of F.. To evaluate these 

integrals, contour integration is performed in the complex k plane. 

The contours for evaluating I, and I« are shown in Figures la and lb, 

respectively. ' 

N 

\r. 
I, 

!P 

0 
r—— trnfi 
|E A 

•a 
i 

\JL 
* 

sm—i 

S    r, 

Fig 1. Contours in complex k plane for evaluating 
the integrals I, and I- 

In these figures, A is the branch point, P is a pole on the real axis, 

and the heavy line along part of the real axis and along the negative 

imaginary axis is the branch cut. These contours are chosen s^nce 

13 
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H„ (kr) is analytic in the first quadrant while H^(kr) is analytic 

in the fourth quadrant of the complex k plane. In the first quadrant, 

Im vQ > 0 and Re vQ > 0, while in the fourth quadrant Im v. < 0 and 
BN - BN - UN - 

Re v.    > 0. 
ßN - 

21.   Using Cauchy's integral theorem, Equation 16 becomes 

I = \   I ffcuOH^Urk dC + \   I fU^H^Urh dt 

+ 1    /   f(c,<-)H<2,Ur)C dC - wl£Res[f(c,u>)H<2)(crk       (17) 
2   OAE n n 

• \ / f(c,*)Hj])(cr)« d? + \  I fU,u)H<2)(cr)c d? . 
r<> 

As the arcs r, and r2 extend outward to Infinity, the contribution 

of the last two terms in Equation 17 to the total solution goes to 

zero. Using an expression for the analytic continuation between the 

Hankel functions 

H^Ur) - - exp(-in*)H<2)(-cr), 

Equation (17) becomes 

•1« 
I « \  / CMc.u.) - exp(-in„)f+(-c,ü.)]HJ;

2)(cr)c d? 

N 
+ J- / Cf+(k,w) - f_(k,w)]H<

2)(kr)k dk (18) 

»1 I Res[f(c,u,)HJ;2)Urk]  , 

where the + or - subscripts indicate that Im v  > 0 or Im v < 0, 
N ß N 

respectively, is to be used to evaluate the expressions for f(c.w). 

14 
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22. By a simple change in variable Equation (18) can be 

rewritten as 

I - - 2" I   [M-IT.U.) - exp(-1ni,)f+(lT,u.)]H^
2)(-lT)T dT 

+ X   f       [f+(k,a.) - f (k,ai)]H^2)(kr)k dk c   o " 
(19) 

- «1 I  Res[fU,u.)Hj;2)(crk] . 

23. The final steps of the derivation make use of specific 

properties of the functions g,, g2, and F.. Letting f (c,u) • gi/Fi 

and f^c,u>) *  9?/Fi » ** can be snown tnat 

fj(x,u>) » f}(-x,u) 

f+(x,tü) = - f2(-x,u>) 

fl(-ix.co) = fj(1x,<o) (20) 

f^(-1x,u) = f
2(1x,u>) 

fi'2(x,u.) - fl*2(x,(o) , 

where x Is a real quantity and the bar above the function Indicates 

that the complex conjugate should be taken. 

15 
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24. The modified expressions for G, and G- of Equation 13 

finally become 

N 
G1 = i /  Im[fj(k,(o)]H^2)(kr)k dk 

- tri I ResCf^cuOH^Urk] (21a) 

- §/ ImCf|(iT,a>)]K (trh dT rr o 

G? = i    /     Im[fJ(k,u))]HJ2)(kr)k dk 
c 0 ' 

- Tri I Res[f2(c,w)H{2)(Cr)?] (21b) 

Ott 

+ §/ Re[f2(iT,(o)jK1(Tr)T dx 

where the additional relations 

and 
H{2,(-iz) -| K^z) 

have been used. Kn(z) is a modified Bessel function of order n. 

Numerical Integration Techniques 

25. A computer program, WESHASK, has been written to perform the 

computations required to evaluate Equation 21. Appendix A contains a 

16 
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listing and a description of the use of this program. It is appropri- 

ate to discuss the numerical integration techniques used as well as 

their limitations. Each of the three terms making up G, and G~ In 

Equation 21 is discussed separately. 

26. The first term in both G, and G» Is an integral along the 

real axis of the form 

k„ 

/  f(k,u.)H^'(kr)k dk 
o      n 

.(2), (22) 

To evaluate this integral, a change of variable is introduced.    Using 

relation k = k   sin y » Equation 22 becomes 

ir/2 in) 0 
f   f(k   sinY,ü))H» '(k   r sinY)k   sinY cosy dY 
0    h "   ßN      ßN 

(23) 

The advantage of Equation 23 is that the integrand has a zero weight 

at k • k. , where the branch point may introduce a singularity at 
ßN 

some frequencies, as well as at k = 0, where the Hankel function be- 

comes undefined. 

27. Equation 23 is evaluated by using a trapezoidal integration 

rule: 

M-l 
,(2), I     fd^.uOHjf'(k.r)kg sinYi cosYi AY 

1=1 
(24) 

where 

AY *  ir/2M , Y. = iAY , andk. «ka s1nY. . 

28. The choice on the summation index M depends upon both 

the maximum angular frequency, u, and epicentral distance, r, consi- 

dered. The Hankel function H* '(z) is an oscillatory function. To 

avoid numerical integration problems, the Hankel function must be 

sampled at least twice per oscillation. For a given frequency f 

(u* 2wf) and distance r, the value of M should be large enough to 

' 

17 
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to approximate the inequality 

M > irfr/ßN . 

Good numerical results have been obtained using M * 100 for frequencies 

less than O.b Hz for distances less than 500 km with B., = 4.67 km/sec. 

Even though tnis value of M does not satisfy the inequality, 1t is 

reasonable to expect that the guidance given by the above inequality 

yields the proper order of magnitude for M. 

29. The second term for the expressions of G, and G2 in Equation 

21 is the residue contribution of the poles. For an earth model with 

no anelastic attenuation loss, the poles lie on the real axis in the 

range k. < k < k.   The poles are found by locating the zeros of 
ßN -  - ßv 

the function F. by a search in the region k. + Ak < k < k. to find 
L 6N    " ~ ßl 

zero crossings of tne function, after which an interval halving process 

is used to refine the root. To avoid numerical problems at the branch 

point, a possible pole at k = k0 is neglected. This is a minor error 

if Ak is small enough. A value Ak = (kQ - k. )/100 is used in the 
Bl   BN 

program. For reasonable continental crustal models with crustal thick- 

nesses of about 40 km, this choice of Ak should be adequate to frequen- 

cies of 3 Hz, since the number of poles increases with increasing fre- 

quency. The residue contribution of a function g(z)/h(z), having 

a zero of h(z) at z • zQ, is very simply 

g(z0)/h'(z0), 

where h'(z) 1s the first derivative of h(z). 

30. The third term in the expressions for G, and G2 is an integral 

of the form m 

f   fCitf<u)Kn(tf)t dx, (25) 

where f(iT,u>) is a complex quantity. The function Kn(z) decreases in 

an exponential manner for Increasing z and has a singularity at z « 0. 

The exponential decrease with large values of the argument suggests the 

18 
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use of a Gauss-Laguerre Integration rule if f(i-r.w) does not oscillate 

too fast.   After a change of variable and application of the Gauss- 

Laguerre integration rule, Equation 25 Is approximated by 

? X "* C «T*** "k «N«k>VvW (26) 

_th 
where xk and wk are the abscissas and weights of an m  order Gauss- 

Laguerre rule. 

31. Error Is Introduced Into the evaluation of Equation 26 

because of the oscillatory nature of f(1x,u). This can be mitigated 

by using a very high order rule, so that the abscissas are closely 

enough spaced. Because the weights w. decrease wry fast for large 

values of the Index k, one does not need to use all m terms of the 

summation. The computer program WESHASK uses the first 24 weights 

and aosclssas of a m - 68 order rule which were taken from the 
9 2 

tables of Stroud and Secrest.  Because of the r  term in the 

expression, the contribution of Equation 26 to the total solution 

only becomes important at short distances. The approximation used 

in the computer program gives good results for distances greater than 

5 km and for frequencies less than 1 Hz. 

Independent Solution for Simplified Case 

32. To test the computer program WESHASK, an independent 

solution was found for the simple case of a source within a single 

layer overlying a halfspace. For a source at a depth h within a 

layer with thickness d., the expressions for G, and G„ of Equation 11 

take the form 

G, = / 
I   o 

„2        P? 
pl v S  + — v C 
7   81 ft  p1 02 ßl 6 

v„ C„ + 
ß 1 

2    ^r 'lyiA 2 pl   '3, Pl Pl 

k JQ(kr) dk (27a) 

19 
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G2 = / 
o 

\C J^kr) dk 

P*\\+PV2\\ 

where S^ - Sß| (d, - •»,). C^ - C^d, - h,). S^ - S^ (d,) 

Ce     = S ^1^'    The other symbols are as previously defined. 
1    1 2 

33. Defining the layer rigidity as pn = pRßn and a complex 
reflection coefficient as 

(27b) 

and 

R   .   i '  , 
p2vS2 

+ VB, 

Equation 27 can be rewritten as an infinite series as follows: 

»   \ 
6. • /   — 

l       0    Pj 
exp(-v3 h) + Rexp[-v$ (2drh)] -R exp[-vß (2d1+h)] 

- J^expL-Vg (4drh)] + J^expC-v^ (4d]+h)] +...+ 

(28) 

hs -k 
0 pl% 

exp[-vQ hj - R exp[-v0 (2d.-h)] 
ß 1 »1      ' 

- Rexp[-vß (2d1+h)] + R2exp[-vß (4drh)] 

+ J^expt-Vg (Adj+h)] +...+ 

20 
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34. This expansion is termed a generalized ray expansion since 

each term represents the contribution of rays that are multiply re- 

flected after leaving the source. The first term in the G, and G„ 

expansions represent the contribution of the direct ray from the 

source to the receiver at the free surface, while the next two terms 

represent rays that are reflected or refracted once from the inter- 
o 

face at a depth z • d,.     The term generalized ray is used since the 

integral of each term yields both the reflected and refracted arrivals 

associated with each ray.    In an infinite medium, just the first term 
comprises the solution for G, and G2 since R = 0. 

35. The first terms of the expressions for G, and G-    in 
Equation 28 can be evaluated directly by taking derivatives of the 

Sommerfeld integral.    It can be easily shown that 

7   exp[-vßh]J0(kr)k dk . * ( jj + y exp(-ikßR) = H, 

/   £ exp[-vRh]J,(kr)k dk = £ f 20L + Jj exp(-ik R) = H?    , 
o   v 3     l R l ßR     R^J ß z 

(29) 

where R2 • h2 + r2. 

36. Equation 29 can be used to evaluate the individual terms 

of Equation 28. The two basic integrals to De evaluated are of the 

form 
OB 

(30a) 

and 

/ R° exp[-Vft Z] Jn(kr)k dk 
o - 'e^J uo 

/^-R0 exp[-vß Z] J^kr) k dk . (30b) 

The evaluation of these two integrals is complicated by the oscilla- 

tory character of the Bessel function for large k.   However, for 

large k, the complex reflection coefficient R approaches a limit, 

R(-,w) "2 - "1 
V2  +  V} 

(31) 
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37. The oscillatory behavior for large k can have a minimal effect 

if the integrals of Equation 30 are rewritten using Equations 29 and 31 

in the following manner: 

/   C Rn(k,u>) - R"KO>)] exp[-va Z] Jn(kr)k dk + RV.OOH,        (32a) 

/  zr- C Rn(k,u) - RV,*)] exp[-v»0 Z] ü.(kr)k dk + RnKu>)H9  .    (32b) 
0  v 

form 

and 

ß! 'ß,-    "I 

38.    The integrals to be evaluated in Equation 32 are of the 

CO 

1. • / g(k)exp[-v. Z]J (kr)k dk (33a) 
•      o PI     o 

U • / rr~ g(k)exp[-vft Z]0,(kr)k dk, £      0 v&i ß1       I (33b) 

where g(k) is function which goes to zero for large k. 

39.   A critical point in the evaluation of Equation 33 is at 

k = k       where v.    changes from positive imaginary to positive real 
61 el 

with increasing k.    To properly take into account the change in 

character of the integrands,   the integration is performed over 

two ranges oy using the following transformations: 

a.    0 < k < k. —        —    —   p 1 

k = k    siny 
ß 1 

dk * k   cosy dy 
ßl 

vö   = ik.   cosy      , for 0 < Y < */2 ß ß 1 

b.    k„   < k < V 
k * k     coshn e l 

dk • k     sinh^ dr> 
ß 1 

I ,- - • -••••  
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v. = k. sinh n, for 0 < n < » . 
ßl   01 

40. Using these transformations, Equations 33a and 33b become 

the following: 

IT/2 2 

Ij - / g(k& sinY)exp[-ikg ZcosY]J0(kß r sinY)kß cosYsinY dY 

y 
+ f  g(^0 coshn)exp[-k0 Zsinhn]Jn(k0 rcoshn)k„ coshnsinhndn 

0 Pi p-i U     P-i Pi 

(34a) 

IT/2 2 2 
I, = -i   /   g(kfi sinY)exp[-ik   ZcosY]J,(k   r sinY)k     sin Y dY 

C o P] PI 1 1 

00 2 2 + / g(k. coshn)exp[-k. Zsinhn]0-, (kQ rcoshn)k^    cosh n dn 
0   '     Pi Pi ^l ^l 

(34b) 

41.    The first integral  in the expressions for I, and I2 is 

easily evaluated using a trapezoidal rule.    The limitations on the 

applicability of the trapezoidal rule are as discussed previously in 

Paragraph 28.    The second integral in each expression can be evalu- 

ated using the Gauss-Laguerre integration rule after one last trans- 

formation. Let x • k    Z sinh n. Then 

and 

dx = k_ Z cosh n dn 
ßl 

Lk«   + (x/Z)2]1/2 = kft cosh n. ßl ßl 

42.    The numerical approximations to I, and I2 are finally 

M-l ? 
h '   L 9[k(Ym)] exp[-ik   Zcos ^jJ^k^r]^ sin Ym cos Ym AY 

m = I 1 1 

+ K   l   w, g[k(x )] x   JQ[k(x.)r] 
Z   j*l    J J       *   °       J (35a) 

i 
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I2 • A   g[k(Ym)] exp[-1k   Zcos Y^WYJ^2   s1n2
Y|n AY 

m-1 i i 

• -    I   w. g[k(x.)] k(x.) J,[k(x.)r] , (35b) 
2    j=l    J J J      •        j 

where 

Ay • ir/2M 

Ym • m Ay 

MY.) - k^sln Ym 

and x. and w. are the abscissas and weights of an n-point Gauss- 
Laguerre integration rule and 

Mx.) = Ck^   + (x./Z)2 ]1/2    ' 

Tne techniques outlined in this section are used in the computer 

program WESREFl which is given in Appendix B. 

Numerical Tests 

43. In the process of generating realiatic seisrograms, a 

fast Fourier transform, FFT, is used to perform the integration re- 

quired by Equation 12 to convert the frequency domain representation 

of the solution into the desired time series. One problem that arises 

is the representation of a unit step function by the FFT. This arises 

because the FFT, unlike the Fourier transform, is periodic in time. 

To avoid numerical problems associated with discontinuities, the 

velocity on the fault is specified rather than the displacement. This 

means that the seismograms computed are ground motion velocity histories 

rather than ground motion displacement histories. The solution, though, 

is amenable to either integration or differentiation to form displace- 

ment or acceleration time histories. 

44. The source function used to represent the velocity of the 

motion of the fault is given by the function s(t), defined as 

follows: 

24 
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2xs(t) 

I (t/x)2 

4(t/T)2 + 2(t/x) - 1 

1 
2" 

1 (t/x)2 - 4(t/x) + 8 

t < 0 

0 ^ t < x 

x < t <^3x (36) 

3x < t < 4x 

t > 4x 

The pulse s(t) is defined such that the area under the pulse is 

equal to one. 

45. For the examples that follow the values x • 0.5, 1, 2 sec 

have oeen used. To avoid numerical problems at high frequencies, 

s(t) is low pass filtered to pass frequencies less than 1.0 Hz. 

Figures 2 and 3 show the low pass filtered pulse and its Fourier 

amplitude spectrum for x = 0.5 sec and x * 1.0 sec, respectively. 

The cutoff frequency of 1.0 Hz was chosen to coincide with a spectral 

minimum of S(f) for x • 0.5, 1, or 2 sec. This choice prevents sharp 

discontinuities in the frequency domain, which would introduce noise 

in the time domain signal. This technique eliminates some of the 

high frequency noise problem that was present in earlier work 

by Herrmann and Nuttli.11'12 

46. The earth model used to test the computer program WESHASK 

by comparison to the results of the program WESREFL is a simplified 

continental model (SCM) given in Table 1. This model represents a 

first approximation to a realistic earth model for the central 

United States. A second, more realistic earth model is also given 

in Table 1 under the heading Central United States Model (CUS). 

This second model is in reasonable agreement with P wave refraction 

and surface wave dispersion models proposed for the central United 

States.13'14'15'16 

47. As input to the computer programs WESHASK and WESREFL, 

25 
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Table 1 

Earth Models Used 

Layer 
Thickness   P Vel     S Vel 

d km    a km/sec  6  km/sec 
Density 

p gm/cnp 

Simplified Continental Model (SCM) 

40 6.15 

8.09 

3.55 

4.67 

2.8 

3.3 

Central United States Model (CUS) 

1 5.00 2.89 2.5 
9 6.10 3.52 2.7 

10 6.40 3.70 2.9 
20 6.70 3.87 3.0 
-- 8.15 4.70 3.4 

28 
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layer thicknesses and distances are given in units of km, the layer wave 

velocities are given in units of km/sec and the density is given in 
3 

units of gm/cm . These units were chosen for ease of input of numerical 

data. In line with this usage, the ground motion velocity time histo- 

ries are in units of cm/sec if it is understood that a source of seismic 
20 

moment 10  dyne-cm is used. To compute the ground motion for a seismic 
24 

moment of 10  dyne-cm, for example, one must multiply the computer out- 
4 

put by the factor 10 . Note also that the output given is the function 

G, or Gp and the results must be multiplied by the functions F, or F„ of 

Equation 11 to give the proper results for comparison to real data. 

48. Figure 4 is the comparison test of the G, solution at a dis- 

tance r = 10 km from a source 10 km deep in the SCM model. 'A source 

with T = 1 sec is used. To understand the relative effect and impor- 

tance of each term in Equation 21, the contribution of each additional 

term to the final solution is shown. For ease of presentation, the 

time series is plotted as a function of the reduced travel time 

"t - x/4.57" where t is the true travel time and x is the distance 

from the source. Figure 4a shows the pole contribution to the total 

solution. Figure 4b shows the effect of adding the contribution of 

the branch line integral along the real k axis to the pole contribu- 

tion. Figure 4c shows the complete solution provided by WESHASK, 

e.g., that which includes the pole contribution and the contributions 

of the branch line integrals along the real k axis and along the neg- 

ative imaginary k axis. Figure 4d is the solution provided by WESREFL. 

It is seen that the pole contribution is non-causal and of low ampli- 

tude. (The later arrivals are in fact early negative time arrivals 

because of the periodicity of the FFT). The addition of the branch 

line integral along the real axis improves causality and raises the 

signal amplitude to the final level. The branch line integral along 

the negative k axis affects the amplitude level only slightly while 

making the resultant signal causal. The agreement between the WESHASK 

(Figure 4c) and the WESREFL (Figure 4d) solutions is excellent. The 

slight motion at a reduced travel time of about 15-20 sec is due to 

energy reflected once from the layer boundary at a depth of 40 km. 

29 
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Figure 5 is similar to Figure 4 except that the G2 solution is shown for 

the same source and receiver condit'ns. 

49. Figure 6 compares the G, solution obtained at a distance of 

300 km from the same source used to generate Figure 4. This figure 

shows that at large distances the pole contribution (Figure 6a) is the 

most important contributor to the final solution. The addition of the 

branch line integral along the real axis to the pole contribution (Fig- 

ure 6b) makes the signal causal (e.g., no arrivals before predicted Ray 

theory arrivals). As expected from Equation 26, the branch line inte- 

gral along the negative imaginary k axis makes an insignificant contri- 
_2 

bution at large distances because of its r  character. Again the com- 

parison between the final solution obtained using WESHASK (Figure 6c) 

and the WESREFL solution (Figure 6d) is very good. Figure 7 is the G2 

solution corresponding to the G, solution of Figure 6. 

50. While no independent has been developed yet to test WESHASK 

for more complicated earth models than a single layer overlying a half- 

space, it is of value to consider the importance of the various contri- 

butions of the terms of Equation 21. Figure 8 is the G, solution for 

a source at a depth of 10 km in the CUS earth model. A source pulse 

with T = 0.5 sec is used. From top to bottom, the various traces are 

the pole contribution, the contribution of the poles and real axis 

branch line integral, and the complete solution. As for the simple 

earth model at short distances, the pole contribution alone is non- 

causal and of low amplitude. The addition of the branch line integral 

along the real k axis improves causality and raises the amplitude to 

its final level. The addition of the branch line integral along the 

negative imaginary k axis makes the signal causal. Figure 9 is the G2 

counterpart of Figure 8. The slight overshoot in the main pulse is an 

effect of only using frequencies less than 1.0 Hz. 

51. Figure 10 is the G, solution at a distance of 10 km from a 

source at a depth of 10 km in the CUS model. In this case a longer 

source pulse was used with T • 1 sec. Figure 11 is the G2 solution 

corresponding to the G, solution of Figure 10. A comparison of 

Figures 8-11 shows that the causality and amplitude errors 
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associated with using a partial solution obtained by ignoring 

one term of the complete expansion of Equation 21 becomes worse 

as a longer source pulse is used. Figures 12 and 13 are the G, and 

G~ comparisons at a distance of 50 km from a source at a depth of 

10 km in the CUS model with a pulse having x = 1 sec. The pole con- 

tribution by itself yields amplitudes of the right order. The G, 

solution requires the branch line integrals for causality, while the 

G, solution is almost completely described by the pole contribution 

alone. 

52. The value of the exercise just performed by studying the 

solutions shown in Figures 8 - 13, is that distance ranges at which 

computational efficiency can be obtained are indicated. For example, 

at short distances, the complete solution complete with poles and 

branch line integrals must be obtained. At large distances, especially, 

if one is not interested in causality, the pole contribution by itself 

suffices to provide a very realistic estimate of the final solution. 

By not having to perform the branch line integral along the negative 

imaginary axis at distances greater than ICO km, for example, con- 

siderable computer time can be saved in obtaining the final solution. 

53. Figure 14 shows the dependence of G,, left side, and Go, 

right side, upon distance. The source is at a depth of 10 km in 

the SCM model. A source pulse with t • 1 sec is used. Secondary 

arrivals due to deep reflections are very prominent in the G, solution 

since the vertical dip slip source is very efficient at generating 

waves that leave the source in a near vertical direction. On the 

other hand the vertical strike slip source or 45° dip slip source 

is not very efficient at generating near vertical waves. Hence, 

the near vertical reflections are more prominent in the G, solution. 

At larger distances, rays which left the source near vertically at 

short distances reflect off the interface at the depth of 40 km with 

angles near the critical angle. As a ray becomes supercritically 

reflected, there is little energy loss upon refletion and a phase 

change is introduced. It 1s seen from Figure 14 that very low ampli- 

tude phases at short distances become large contributors to the signal 
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r 
at large distances for precisely this reason. It is also seen how 

the various multiple reflections combine together to form what is 

known as a surface wave at large distances. The refraction arrival 

is of relatively small amplitude compared to the surface wave at 

large distances. The progression of the SH wave signal from a simple 

pulse at short distances to the surface wave, called Love wave, Is 

gradual. The surface wave can be said to take over from the direct 

pulse at a distance at which the first supercritically reflected 

waves arrive. At tnis point the waveform changes from a simple pulse 

to a complicated set of arrivals. 

54. Figure 15 compares the G, and 62 solutions as a function 

of distance for a source with x = 1.0 sec at a depth of 10 km in the 

CUS earth model. There seems to very little difference between this 

solution and that presented in Figure 14 at short distances. However, 

at large distances, the arrivals are no longer as distinct because 

the more complicated earth model permits many more reflections and 

refractions by the various layers. Figure 16 shows the G, and G~ 

solutions as a function of distance for a source with T = 0.5 sec 

at a depth of 10 km in the CUS earth model. With the shorter source 

pulse the various crustal reflections can be easily seen compared 

to Figure 15 with tne longer source pulse. A close examination of 

the records indicates that numerical noise is present only at the 

very short and very large distances, as is expected from the discussion 

of numerical integration techniques used. 
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PART IV: SUMMARY AND CONCLUSIONS 

77 

55. The numerical results presented in the previous section 

show that the tasks originally undertaken for this research project 

have been accomplished. For the first time a workable computer pro- 

gram package is available for making realistic predictions of SH wave 

ground motion both near the seismic source and at large distances 

from the source. The solutions presented seem valid in the distance 

range of 5 - 500 km for frequencies less than 1 Hz. Future work 

should be directed toward the extension of the computer program to 

shorter epicentral distances and higher frequencies. 

56. This ground motion model should be of use in its present 

form to make some deductions as to the form of an empirical model for 

fitting observed ground motion. Many attempts at modeling strong 

motion data have been made by trying to fit observed time histories 

to motions expected from a dislocation source in an infinite medium.' 

This technique ignores the generation of surface waves and the complex- 

ity introduced by the free surface. It is equivalent to using only 

the first term of the G, and G expansions of Equation 28. The adequacy 

of this elementary modeling can be tested using the computer programs 

developed in this report. 

57. Figure 17 demonstrates the effect of variation of focal 

depth upon the maximum ground velocity for a source with T * 1 sec 

at depths of 5, 10 and 20 km In the SCM earth model of Table 1. The 

velocity values must be adjusted as described in Paragraph 47 before 

comparing to real data. The solid curves indicate the theoretical 

solutions for the halfspace having the material properties of the 

first layer of the SCM earth model. It 1s seen that the halfspace 

solution is adequate out to about 75 km. This is because at 75 km 

for this earth model the first supercritical reflections occur and 

the surface wave begins to form. The difference in the geometrical 

spreading between the G, and G» solutions is due to the difference 

in radiation patterns between the two basic solutions. Figure 18 
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shows the effect of variation of source pulse length for a source at 

a depth of 10 km in the SCM earth model.    The maximum ground velocity 

was computed using t • 0.5, 1 and 2 sec. For a constant area under 

the source pulse, or in other terms a constant seismic moment, the 

maximum ground velocity increases as t decreases.    The effect of 

the transition from a pulselike arrival to a surface wave is again 

seen at a distance of 75 km by the departure of the computed solution 

for the SCM earth model indicated by the symbols and the halfspace 

approximation given by the solid lines. 

58. Figures 17 and 18 were obtained for a very simple earth 

model.    The computer program WESHASK can be used to do a similar 

study for other earth models and source parameters.    For a crustal 

model with a shallower depth to the crust-mantle interface, simple 

model scaling indicates that the transition from a near-field 

pulselike ground motion character to a far-field surface wave 

character would occur at shorter epicentral distances than for the 

SCH earth model.    It is quite feasible to determine figures similar 

to Figures 17 and 18 for a southern California earth model in order 

to obtain an insight as to the empirical shape to use when fitting 

southern California strong motion data as a function of distance. 
59. Aside    from giving an insight into the nature 

of gross ground motion parameter modeling,   such as maximum 
velocity versus distance,  the computer program developed here 
should be able to predict strong motion ground displacement 
time histories for real earthquakes as well as the generalized 
ray technique of Helmberger and Malone.      To predict strong 
motion acceleration time histories, whose high frequency 
content is strongly affected by the heterogeneities of the 
real earth,  further research is required on the statistical 
modeling of high frequency waves scattered from these 
heterogeneities.    When this is done,  a technique proposed 
by Herrmann      could be used to yield a synthetic seismogram 
having the coherent low frequency character described by 
the theory presented in this report and the high frequency 
content of the scattered waves.    Such a ground motion time 
history would be as realistic as is presently possible. 
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